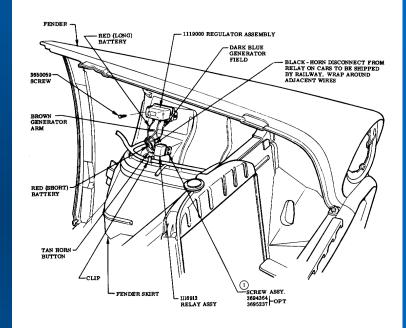
Cleaning Sensitive Electronics

A Hubbard-Hall Presentation

The Importance of Electronics Reman

- Is it worth the effort?
 - What to consider
 - Value percent of total vehicle
 - Cost to replace vs. reman
 - Surface to clean degree of difficulty
 - Contaminants match the cleaner to the soil
 - Cleaning options is water the answer?
 - Equipment best practices
 - Sustainability



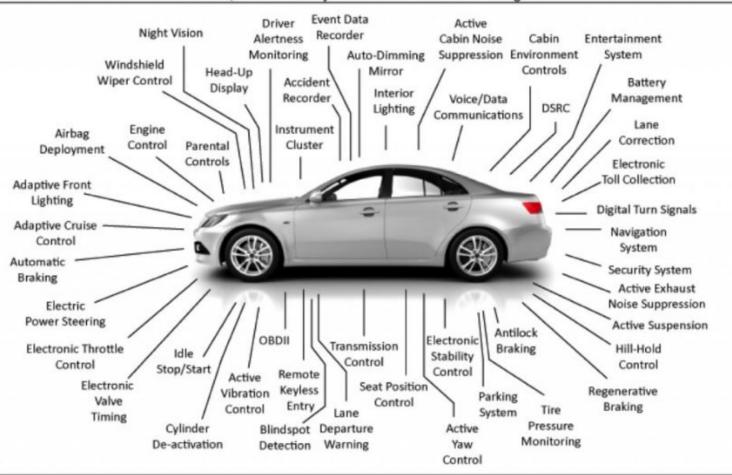
Electronics in vehicles - Then

1957 Chevrolet Belair

- Horn
- Lights
- Radio
- Windshield wipers

VOLTAGE REGULATOR & HORN RELAY INSTRUCTION

						NAME PASSENGER CAR INSTRUCTION MANUAL				
				_	-	REF.	DRAWN	CHECKED	F SECT.	SHEET
7-23-56	1	WAS 3650059 SCREW	1140			DATE 7-25-55	PART No. 372	26600	712	17.00
DATE	SYM.	REVISION RECORD	AUTH.	DR.	CK.	1				



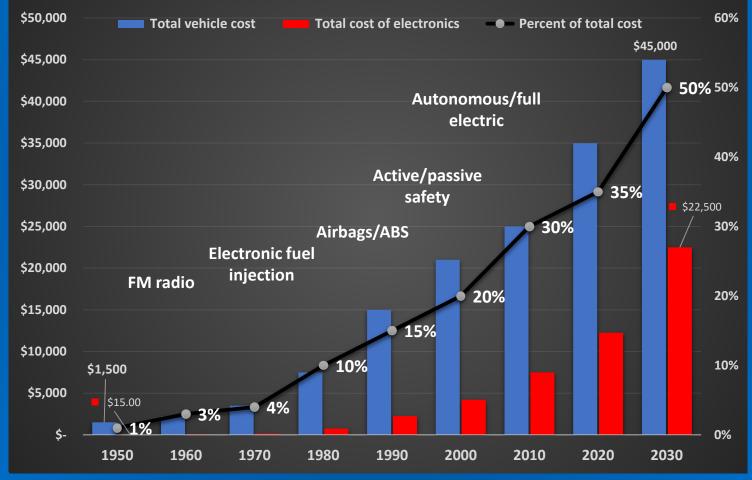
MODELS

ALL

Electronics in vehicles - Now

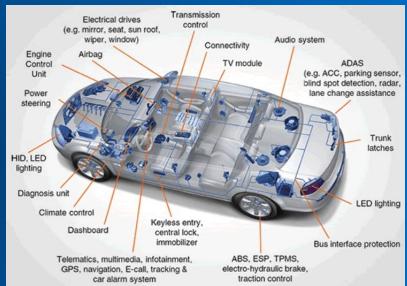
Current electronics on passenger automobile

Electronics in vehicles - Tomorrow

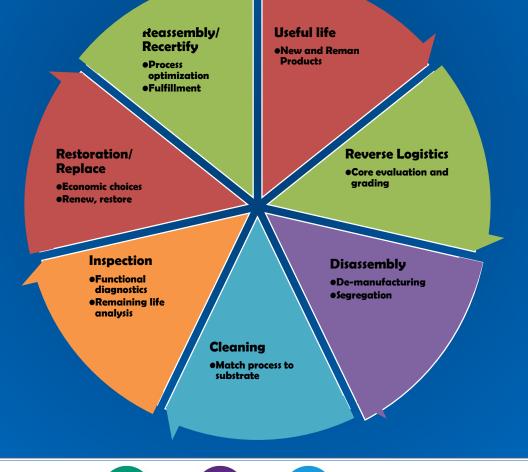

Level 5 Fully Autonomous Vehicle

Electronics in vehicles

Growth of Electronics in Vehicles



Critical Cleaning – extends into automotive


- Lighter, stronger substrates
- Exotic alloys
- Alphabet soup of plastics
- Other non-metallic surfaces
- New vocabulary for cleaning
 - Surface tension
 - Wetting agents
 - Specific gravity
 - Solubility
 - Vapor density/vapor pressure
 - Kb value

Automotive Electronics Remanufacturing Product Life Cycle

Automotive Electronics Remanufacturing Product Life Cycle

Cleaning

- Match process to substrate
- What is the material made of?
- What process is optimal?
- Choices
 - Aqueous
 - Solvent
 - Semi-Aqueous
- Equipment
- What is the next process?

Failure Is Not an Option

Cleanliness is #1 for several remanufacturing industries:

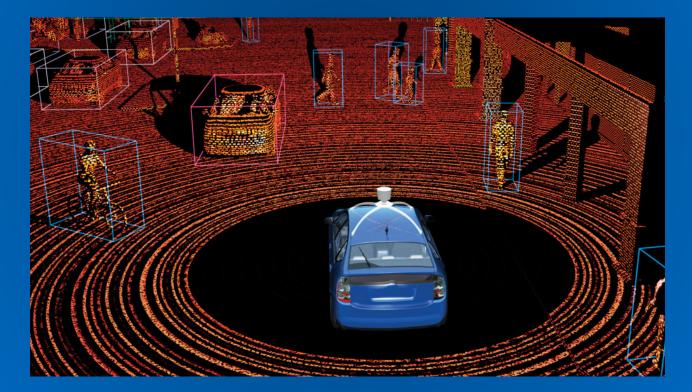
- Automotive
- Aerospace
- Electronics
- Military

Identify the level of cleaning required

Class 1 = disposable electronics

Identify the level of cleaning required

Class 2 = cell phones



Identify the level of cleaning required

 Class 3 = critical cleaning – think lidar for autonomous vehicle – cost of mistake is unacceptable

It's all about the core

Traditional core restoration typically involves large, heavy parts without exotic metal alloys or sensitive components and delicate plastics

Identify the Part

- Configuration
- Size
- Weight
- Blind Holes

ZETEC



Identify the contamination

- Soils there are only 3 types
 - Organic
 - Lubricants and grease
 - Organic coatings/CARC coatings
 - Dissolved conformal coating
 - Inorganic
 - Heat scale
 - "white" residue
 - Rust/Corrosion
 - Oxidized solder paste/flux
 - Particulate
 - Non-ionic
 - Powder coating

Identify the Substrate

- Carbon steel
- Stainless steel
- Aluminum-alloy
- Copper alloys
- White metals
- Non-metallic-plastic
- Fiberglass & epoxy
- Hard surface

Cleaning Chemistries

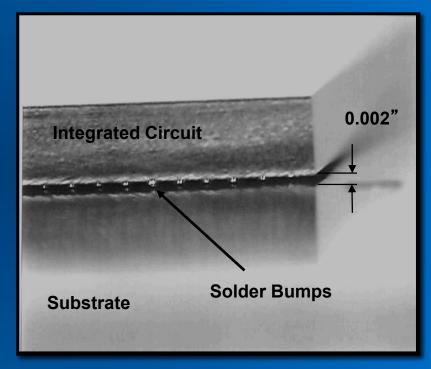
- Solvents for Vapor Degreasing
 - HFC Hydrofluorocarbons
 - Chlorinated (MeCl, TCE, PCE)
 - Brominated (nPB)
 - Hydrofluoroethers

Alternatives to Solvent Vapor Degreasing

- Hydrocarbons Mineral spirits, ethanol, isopropanol
- Semi-aqueous water, terpenes, glycols
- Aqueous water, surfactants, additives

Degreasing

- In aerospace and automotive electronics, Size and Weight Are Constrained, Leading to Very Small Parts With Tight Spacings
- Aqueous Systems Fail to Reliably Clean in Tight Spacings; Water Removal Also Is Problematic
- Vapor Degreasing Delivers Quality Cleaning in Minutes



Flux Removal

- Advanced Chips Generate High Temps
- Clearances Are Extremely
 Small
- Solder Joints Trap Residues and May Add "Noise" on a Circuit and/or Interfere With Under-filling of Epoxies
- Vapor Defluxing with Low-Surface Tension Solvents Eliminates the Problems

Particulate Removal

- Metal finings and dust particles can be trapped on small surfaces
- High density and low surface tension fluids remove particulates
- Vapor Degreasing Provides High Through-Put, Few Cleaning Errors

Identify Equipment Needs

- In-process considerations
- Segregate incompatible substrates
- Space concerns
- Environmental/ Regulatory concerns

Sustainability of Cleaning Process

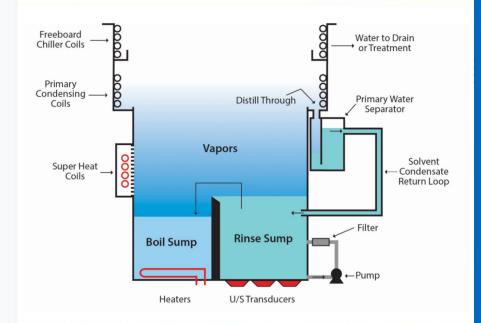
Task	solvent degreaser (kWh)	aqueous degreaser (kWh)
deionize & heat water	0	1
operate degreaser	4	8
drying	0	5
wastewater treatment	0	4
total electrical use/hr	4	18
total electrical use/month	640	2880
stand-by electrical use/day	16	48
stand-by electrical use/month	512	1536
Total process electrical use/month	1152	4416

Sustainability of Cleaning Process

Chemical	Surface Tension	Viscosity, cP	Specific Gravity	Latin Heat, cal/g	Flash pt	Solvency (KB)
Water	72.80	1.00	1.00	543.00	N/A	6.50
Acetone	25.20	0.31	0.78	123.80	-20.00	6.50
Isopropyl Alcohol	22.10	1.06	0.81	167.70	53.60	N/A
TCE	26.40	0.79	1.46	56.40	N/A	129.00
nPB	25.90	0.49	1.35	58.80	N/A	125.00
HFE	14.00	0.67	1.52	30.00	N/A	10.00
HFC Blend	18.80	0.47	1.34	85.00	N/A	50.00

Why Choose Vapor?

- Solvent Advantages:
 - High Cleaning Efficiency
 - Non-flammable
 - Quick Drying
 - Small Equipment
 Footprint
 - Lower Operating Cost
 - Self-cleaning
- Solvent Disadvantages:
 - Regulations
 - "First Fill" Costs



Why Choose Vapor?

Basic degreaser

- 2 sumps
- Boil sump
- Rinse/ultrasonic
 sump
- Vapors clean cold parts
- Vapor condenses on cooling coils
- Liquid collects and replenish the rinse sump

Cleaning Choices

Water	Hydrocarbon solvents	Fluorinated Solvents	Chlorinated Solvents
Inexpensive	Inexpensive	Expensive	Inexpensive
Readily available	Aggressive cleaning	Mild/aggressive cleaning	Aggressive cleaning
Safe	Fast drying	Fast drying	Fast drying
Wastewater treatment required	Special equipment needed	Drop-in most machines	Works in all degreasers, some mod.
Drying required	Flammable	cool-to-touch	Non-flammable
Large footprint	VOC's	Non-flammable	Hazardous
Energy consumer		Non-hazardous	Regulated

Thank you

Questions?

Contact: jdavis@hubbardhall.com

